
1

CP MODULE 5(Part 3of3)

BITWISE OPERATIONS.

Some applications require the operation of individual bits within a word of memory.

Such operations are called bitwise operations.

Operation done on bits are called bitwise operations.

Bitwise operatorsin C can be divided into three general categories:

• the one’s complement operator ~

• the logical bitwise operators

o bitwise and expression(&)

o bitwise or expression(|)

o bitwise exclusive or expression(^)

• the shift operators

o right shift operator >>

o left shift operator <<

1. The One’s Complement Operator

The one’s complement operator (~) is a unary operator that inverts the bits of its operand,

1s become 0s and 0s become 1s.
~
1=0

~
0=1

 This operator(~) always precedes its operand.

The one's complement operator is sometimes referred to as the complementation operator.

It has same precedence as other unary operators.

Associativity of complementation operator is RIGHT TO LEFT.

The operand must be an integer-type quantity (including integer, long, short, unsigned, char,

etc.). Generally, the operand will be an unsigned octal or an unsigned hexadecimal quantity.

Complement of octal number example

#include<stdio.h>

main()

{

 int a=0273;

int b;

b=~a;

 printf("\nb=%o",b);

}

//OUTPUT

//177504

Octal number are represented in 3 bits in binary representation

bytes(16 bits). If 16 bits are not there remaining spaces at the beginning are filled with zeo.

If number starts with 0(zero) it is octal number. It

E.g.octal number 015423

E.g.octal number is 0273

2 7 3

010 111 011

Here it has only 9 bits, so to make 16 bits, fill the first 7(16

So 0273 is correctly represented as

0 0 0

a 0 000 000

Now there are 16 bits.

Suppose b=~a.

So a is complemented bit by bit

0 0 0

a 0 000 000

~a 1 111 111

 1 7 7

So complement of a(0273) is 177504.

Complement of HEXADECIMAL number example

#include<stdio.h>

main()

{

 int a=0x73f;

int b;

2

Octal number are represented in 3 bits in binary representation. Since this is int It requires 2

bytes(16 bits). If 16 bits are not there remaining spaces at the beginning are filled with zeo.

If number starts with 0(zero) it is octal number. It is printed using %o .

Here it has only 9 bits, so to make 16 bits, fill the first 7(16-9) bits with 0

So 0273 is correctly represented as

 2 7 3

000 010 111 011

 2 7 3

000 010 111 011

111 101 000 100

 5 0 4

So complement of a(0273) is 177504.

Complement of HEXADECIMAL number example

. Since this is int It requires 2

bytes(16 bits). If 16 bits are not there remaining spaces at the beginning are filled with zeo.

b=~a;

 printf("\nb=%x",b);

}

//OUTPUT

// f8c0

Hexadecimal number is represented using 4 bits in binary representation

0x(Zero X) at the beginning represents that the number is hexadecimal. It is printed using %x or

%X

Hexal numbers are

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F,

20,21,23,24,25,26,27,28,29,2A,2B,2C.2D,2E.2F…………………….

E.g 0x6db7

E.g hexadecimal number is 0x73f. It has to be represented in 16 bits(int need 2 bytes=16 boits).

If not sufficient zeroes are filled at the beginning.

a 7 3 f

 0111 0011 1111

Only 12 bits are there so 0x73f is correctly represented as

a 0 7 3 f

 0000 0111 0011 1111

Complement of a that is ~a is

a 0 7 3 f

 0000 0111 0011 1111

~a 1111 1000 1100 0000

 f 8 c 0

Complement of 0x73f is f8c0

Examples

~0XC5 0xff3a (hexadecimal constants)

~ox1111 0xeeee (hexadecimal constants)

~0xffff 0 (hexadecimal constants)

~052 0177725 (octal constants)

~0177777 0 (octal constants

hexadecimal values: i = 5b3c

decimal equivalents: i = 23356

i = 0101 1011 0011 1100

3

Hexadecimal number is represented using 4 bits in binary representation

0x(Zero X) at the beginning represents that the number is hexadecimal. It is printed using %x or

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F,

20,21,23,24,25,26,27,28,29,2A,2B,2C.2D,2E.2F…………………….

E.g hexadecimal number is 0x73f. It has to be represented in 16 bits(int need 2 bytes=16 boits).

ficient zeroes are filled at the beginning.

Only 12 bits are there so 0x73f is correctly represented as

1111

1111

0000

0xff3a (hexadecimal constants)

0xeeee (hexadecimal constants)

0 (hexadecimal constants)

0177725 (octal constants)

0 (octal constants

0x(Zero X) at the beginning represents that the number is hexadecimal. It is printed using %x or

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F,

E.g hexadecimal number is 0x73f. It has to be represented in 16 bits(int need 2 bytes=16 boits).

~i = 1010 0100 1100 0011

The decimal equivalent of the first bit pattern can be determined by writing 0101 1011 0011

1100

i= 0x2
15

 + 1x2
14

 + 0x2
13

 + 1x2
12

0x2
7
 + 0x2

6
 + 1x2

5
 + 1x2

4
 + 1x2

16384 + 4096 + 2048 + 512 + 256 + 32 + 16 + 8 + 4 = 23356

The Logical Bitwise Operators

There are three logical bitwise operators:

● bitwise and (&)

● bitwise exclusive or (^)

● bitwise or (|).

The operations are carried out independently on each pair of corresponding bits within the

operands. Thus, the least significant bits (i.e., the rightmost bits) within the two operands will be

compared, then the next least significant bits, and so on, until all of the bits have been

The results of these comparisons are:

● A bitwise and expression(

are true).Otherwise, it will return a value of 0.

● A bitwise exclusive or (^) expression will

the other has a value of 0 (one bit is true, the other false). Otherwise, it will return a value

of 0.

● A bitwise or expression

(one or both bits are true). Otherwis

Suppose a and b are unsigned integer variables whose values are Ox6db7 and Oxa726,

respectively.

The results of several bitwise operations on these variables are shown below.

a = 0x9248

b = 0X58d9

a & b = 0x1048

a^ b = 0xca91

a | b = dad9

4

The decimal equivalent of the first bit pattern can be determined by writing 0101 1011 0011

 + 1x2
11

 + 0x2
10

 + 1x2
9
 + 1x2

8
 +

+ 1x2
3
 + 1x2

2
 + 0x2

1
 + 0x2

0
 =

16384 + 4096 + 2048 + 512 + 256 + 32 + 16 + 8 + 4 = 23356

The Logical Bitwise Operators

There are three logical bitwise operators:

ut independently on each pair of corresponding bits within the

operands. Thus, the least significant bits (i.e., the rightmost bits) within the two operands will be

compared, then the next least significant bits, and so on, until all of the bits have been

The results of these comparisons are:

bitwise and expression(&)willreturn 1 if both bits have a value of 1

are true).Otherwise, it will return a value of 0.

(^) expression will return 1 if one of the bits has a value of

the other has a value of 0 (one bit is true, the other false). Otherwise, it will return a value

bitwise or expression (|) will return a 1 if one or more of the bits have a value of

(one or both bits are true). Otherwise, it will return a value of 0.

Suppose a and b are unsigned integer variables whose values are Ox6db7 and Oxa726,

The results of several bitwise operations on these variables are shown below.

The decimal equivalent of the first bit pattern can be determined by writing 0101 1011 0011

ut independently on each pair of corresponding bits within the

operands. Thus, the least significant bits (i.e., the rightmost bits) within the two operands will be

compared, then the next least significant bits, and so on, until all of the bits have been compared.

1 (i.e., if both bits

has a value of 1 and

the other has a value of 0 (one bit is true, the other false). Otherwise, it will return a value

have a value of 1

Suppose a and b are unsigned integer variables whose values are Ox6db7 and Oxa726,

5

a 9 2 4 8

 1001 0010 0100 1000

b 5 8 d 9

 0101 1000 1101 1001

………………………………….

a&b 0001 0000 0100 1000

 1 0 4 8

…………………………………..

a^b 1100 1010 1001 0001

 C a 9 1

…………………………………..

a|b 1101 1010 1101 1001

 D a d 9

The associativity for each bitwise operator is left to right.

Precedence of operators

=======================

High = =

 !=

Equality operators

 & Bitwise and

 ^ Bitwise exclusive or

 | Bitwise or

low && Logical and

Masking

● Masking is a process in which a given bit pattern is transformed into another bit pattern

using logical bitwise operation.

○ One operand in bitwise operation is the original bit pattern..

○ The second operand is called the mask- Mask is a specially selected bit pattern

that helps to transform original bit pattern to another bit pattern.

There are several different kinds of masking operations.

1. A portion of a given bit pattern can be copied to a new word, while the remainder of the

new word is filled with 0s.

a. Thus, part of the original bit pattern will be “masked off’ from the final result.

b. The bitwise and operator (&) is used for this type of masking operation

2. A portion of a given bit pattern to be

new word is filled with 1s

a. The bitwise or (|) is used for this type of masking operation

3. A portion of a given bit pattern can be

original bit pattern is inverted

a. The bitwise exclusive or

………………………..………………………..………………………..………………………..

Masking 1: A portion of a given bit pattern can be copied to a new word, while the remainder of

the new word is filled with 0s

E.g.Suppose a is an unsigned integer variable whose value is Ox6db7.

bits of this value and assign them to the unsigned integer variable b.

Answer: Fill the rightmost 10 positions in mask with 0s. Fill left most 6 bits with 1s. (Total bits

=16 bits)

Perform bitwise & operation between a and mask

6 d b 7

a 0110 1101 1011 0111

mask 1111 1100 0000 0000

……………………………………..

b 0110 1100 0000 0000

 6 c 0 0

Here a&mask=b

0x6db7 & 0xfc00=0x6c00

If any one bit in bitwise & is 0, result of bitwise & is 0

All rightmost 10 bits in the mask b are 0s. So rightmost 10 bits in the result of a&b will be 0.

Remaining 6 bits(leftmost most) are 1s. So remaining leftmost 6 bits in the result of a&b will be

same as ;leftmost 6 bits in a. (because a,&1=a)

Here when each of the leftmost 6 bits in a is

the result will be the same as the original bit in a. (leftmost 6 bits are therefore copied)

Because,

0 & 1 =0

1 & 1 = 1

When each of the rightmost 10 bits in a is

result is always 0.((remaining rightmost 0 bits are filled with 0s)

6

of a given bit pattern to be copied to a new word, while the remainder of the

s.

(|) is used for this type of masking operation

of a given bit pattern can be copied to a new word, while theremainder of the

inverted within the new word.

bitwise exclusive or (^) is used for this type of masking operation

………………………..………………………..………………………..………………………..

of a given bit pattern can be copied to a new word, while the remainder of

Suppose a is an unsigned integer variable whose value is Ox6db7. Extract the leftmost 6

of this value and assign them to the unsigned integer variable b.

Answer: Fill the rightmost 10 positions in mask with 0s. Fill left most 6 bits with 1s. (Total bits

Perform bitwise & operation between a and mask

0111 &

0000 (MASKING BIT)

……………………………………..

0000 (Here leftmost 6 bits of a are only copied into b.Other bits

twise & is 0, result of bitwise & is 0

All rightmost 10 bits in the mask b are 0s. So rightmost 10 bits in the result of a&b will be 0.

Remaining 6 bits(leftmost most) are 1s. So remaining leftmost 6 bits in the result of a&b will be

ts in a. (because a,&1=a)

Here when each of the leftmost 6 bits in a is bitwise and with the corresponding 1 in the mask,,

the result will be the same as the original bit in a. (leftmost 6 bits are therefore copied)

When each of the rightmost 10 bits in a is bitwise and with the corresponding 0in the mask, the

result is always 0.((remaining rightmost 0 bits are filled with 0s)

he remainder of the

remainder of the

eration

………………………..………………………..………………………..………………………..

of a given bit pattern can be copied to a new word, while the remainder of

Extract the leftmost 6

Answer: Fill the rightmost 10 positions in mask with 0s. Fill left most 6 bits with 1s. (Total bits

leftmost 6 bits of a are only copied into b.Other bits

are masked)

All rightmost 10 bits in the mask b are 0s. So rightmost 10 bits in the result of a&b will be 0.

Remaining 6 bits(leftmost most) are 1s. So remaining leftmost 6 bits in the result of a&b will be

with the corresponding 1 in the mask,,

the result will be the same as the original bit in a. (leftmost 6 bits are therefore copied)

with the corresponding 0in the mask, the

7

Because,

0 & 0=0

1 & 0 =0

Mask used here is 1111 1100 0000 0000(0xfc00). Since the 1s appear in the leftmost bit

positions and 0s at rightmost in this mask, this is dependent on the 16-bit word size. To avoid

this problem take one’s complement of this mask, so that instead of 0s in right-most position 1s

will come.

~1111 1100 0000 0000 = 000 0011 1111 1111

1111 1100 0000 0000 = ~000 0011 1111 1111

This means that 1111 1100 0000 0000 can be written as ~ 0000 0011 1111 1111 (~ 0x3ff)

b = a & -0x3ff;

Instead of writing 0x6db7 & 0xfc00=0x6c00,it is better to write:

0x6db7 & ~0x3ff=0x6c00

Now this mask is independent of 16 bits since they contain 1s in the rightmost position and 0s in

leftmost.

………………………..………………………..………………………..………………………..

E.g.Suppose a is an unsigned integer variable whose value is Ox6db7. Extract the rightmost 6

bits of this value and assign them to the unsigned integer variable b.

Answer: Fill the leftmost 10 positions in mask with 0s. Fill rightmost 6 bits inmask with 1s.

(Total bits =16 bits)

Perform bitwise & operation between a and mask

6 d b 7

a 0110 1101 1011 0111 &

mask 0000 0000 0011 1111 (MASKING BIT)

……………………………………..

b 0000 0000 0011 0111 (Here rightmost 6 bits of a are only copied into b.Other bits

are masked)

 6 c 0 0

Here a&mask=b

0x6db7 & 0x3f=0x37

Here mask used is 0000 0000 001 1111(0x3f). This mak contains 1s in rightmost position.So this

mask is independent of the word length

--

8

Masking 2: A portion of a given bit pattern can be copied to a new word, while the remainder of

the new word is filled with 1s

Eg. Suppose that a is an unsigned integer variable whose value is Ox6db7. Transform the

corresponding bit pattern into another bit pattern in which the rightmost 8 bits are all 1s, and the

leftmost 8 bits retain their original value.

If any one bit in bitwise or is 1, result of bitwise or is 1.Otherwise it is copied.

a = 0110 1101 1011 0111 (0x 6db7) |

mask = 0000 0000 1111 1111(0x 00ff)

……………………………….

b = 0110 1101 1111 1111

0x 6 d f f

Here a|mask=b

0x6db7 | 0x00ff = 0x 6dff

Here When each of the leftmost 8 bits in a is bitwise or with the corresponding 0 in the mask,,

the result will be the same as the original bit in a. (leftmost 8 bits are therefore copied)

Because,

0 | 0 =0

1 |0 = 1

When each of the rightmost 8 bits in a is bitwise or with the corresponding 1 in the mask, the

result is always 1.(remaining rightmost 8 bits are filled with 1s)

Because,

0|1=1

1|1 =1

===

Masking 3: A portion of a given bit pattern can be copied to a new word, while the remainder

of the original bit pattern is inverted within the new word.

E.g. Suppose that a is an unsigned integer variable whose value is Ox6db7. Now let us reverse

the rightmost 8 bits, and preserve the leftmost 8 bits. This new bit pattern will be assigned to the

unsigned integer variable b.

Answer:

Use exclusive or operation

When each of the rightmost 8 bits in a is bitwise exclusive or with the corresponding 1 in the

mask, the resulting bit will be the opposite of the bit originally in a(INVERTED).

0 ^ 1=1

1 ^ 1=0

9

On the other hand, when each of the leftmost 8 bits in a is bitwise exclusive or with the

corresponding 0 in the mask, the resulting bit will be the same as the bit originally in

a.(COPIED)

0 ^ 0=0

1 ^ 0 =1

a = 0110 1101 1011 0111 (0x 6db7) ^

mask = 0000 0000 1111 1111 (0xff)

………………………………...

b = 0110 11010100 1000 (0x6d48)

E.g Suppose that a is an unsigned integer variable whose value is Ox6db7

The expression

a^ 0x4

will invert the value of bit number 2 (the third bit from the right) in a. If this operation is carried

out repeatedly, the value of a will alternate between Ox6db7 and Ox6db3. Thus, the repeated use

of this operation will toggle the third bit from the right on and off.

The corresponding bit patterns are shown below.

Ox6db7 = 0110 1101 1011 0111 ̂

mask = 0000 0000 0000 0100 (0x4)

…………………………………….

Ox6db3 = 0110 1101 1011 0011 ̂

mask = 0000 0000 0000 0100 (0x4)

………………………………….

Ox6db7 = 0110 1101 1011 0111

The Shift Operators

The two bitwise shift operators are

shift left (<<)

shift right (>>).

Each operator requires two operands.

● The fust is an integer-type operand that represents the bit pattern to be shifted.

● The second is an unsigned integer that indicates the number of displacements (i.e.,

whether the bits in the first operand will be shifted by 1 bit position, 2 bit positions, 3 bit

positions, etc.).

○ This value cannot exceed the number of bits in the first operand.

THE LEFT SHIFT OPERATOR <<

● causes all of the bits in the first operand to be shifted to the left by the number of

positions indicated by the second operand.

● The leftmost bits (i.e., the overflow bits) in the original bit pattern will be lost.

● The rightmost bit positions after shif

Suppose a is an unsigned integer variable whose value is Ox6db7. The expression

b = a << 1;

a = 0110 1101 1011 0111

When a<<1 is done, bits in a are shifted one position towards left. Then left

Rightmost one position will be vacant after shifting and that will be filled with 0.

a = 0110 1101 1011 0111

a<<1 1101 1011 0110 1110

When a<<2 is done, bits in a are shifted two position towards left. Then leftmost

lost. Rightmost two position will be vacant after shifting and that will be filled with 0.

10

THE LEFT SHIFT OPERATOR <<

causes all of the bits in the first operand to be shifted to the left by the number of

positions indicated by the second operand.

The leftmost bits (i.e., the overflow bits) in the original bit pattern will be lost.

The rightmost bit positions after shifting that become vacant will be filled with Os.

Suppose a is an unsigned integer variable whose value is Ox6db7. The expression

 (0x 6db7)

are shifted one position towards left. Then leftmost bit in a is lost.

Rightmost one position will be vacant after shifting and that will be filled with 0.

 (0x 6db7)

are shifted two position towards left. Then leftmost

lost. Rightmost two position will be vacant after shifting and that will be filled with 0.

causes all of the bits in the first operand to be shifted to the left by the number of

The leftmost bits (i.e., the overflow bits) in the original bit pattern will be lost.

ting that become vacant will be filled with Os.

Suppose a is an unsigned integer variable whose value is Ox6db7. The expression

most bit in a is lost.

Rightmost one position will be vacant after shifting and that will be filled with 0.

are shifted two position towards left. Then leftmost two bits in a are

lost. Rightmost two position will be vacant after shifting and that will be filled with 0.

E.g.a=0x6db7

Here after a<<6 all bits are shifted 6 positions to left. Here six leftmost bits in a are lost and

rightmost 6 vacant positions are filled with 0s

RIGHT SHIFT OPERATOR >>

● The right shift operator causes all of the bits in the first operand to be

by the number of positions indicated by the second operand

● The rightmost bits (i.e., the underflow bits)

● The leftmost bit positions of

filled with Os.

● If the bit pattern representing a

shift operation may depend on the value of the leftmost bit (the sign bit).

○ Negative integers have a 1 in leftmost position,

■ When the signed negative integer is shifted to the right,the leftmost

vacated bit positions are filled with 1s

○ positive integers have a 0 in

■ When the signed positiveinteger is shifted to the right,the leftmost vacated

bit positions are filled with 0s

Hence, the behavior of the right shift operator is similar to that of the left shift operator when the

first operand is an unsigned integer

11

Here after a<<6 all bits are shifted 6 positions to left. Here six leftmost bits in a are lost and

positions are filled with 0s

RIGHT SHIFT OPERATOR >>

The right shift operator causes all of the bits in the first operand to be shifted to the right

by the number of positions indicated by the second operand.

The rightmost bits (i.e., the underflow bits) in the original bit pattern will be lost.

The leftmost bit positions of unsigned integer after shifting that become vacant will be

If the bit pattern representing a signed integer is shifted to the right, the outcome of the

on may depend on the value of the leftmost bit (the sign bit).

Negative integers have a 1 in leftmost position,

When the signed negative integer is shifted to the right,the leftmost

vacated bit positions are filled with 1s

positive integers have a 0 in leftmost position

When the signed positiveinteger is shifted to the right,the leftmost vacated

bit positions are filled with 0s

Hence, the behavior of the right shift operator is similar to that of the left shift operator when the

integer

Here after a<<6 all bits are shifted 6 positions to left. Here six leftmost bits in a are lost and

shifted to the right

in the original bit pattern will be lost.

after shifting that become vacant will be

is shifted to the right, the outcome of the

When the signed negative integer is shifted to the right,the leftmost

When the signed positiveinteger is shifted to the right,the leftmost vacated

Hence, the behavior of the right shift operator is similar to that of the left shift operator when the

Shift left a=6db7 a<<6

Eg

#include <stdio.h>

main()

{

unsigned a = 0xf05a;

12

Shift right a=6db7 a>>6

int b = a;

printf ("%u %d\n", a, b) ;

printf ("%x\n", a >> 6) ;

printf (“ % x \ n " , b >> 6) ;

}

Here a=0xf05a

Binary representation

Unsigned decimal value=

1x2
15

+1x2
14

+1x2
13

+1x2
12

+0x2
11

0x2
0

=61350

Signed value =2s complement

Since leftmost bit in a is 1, sign is negative

0x2
15

+0x2
14

+0x2
13

+0x2
12

+1x2
11

0x2
0

= -4006

Here a=0xf05a

Here a is unsigned its decimal(printed using %u) value is 61530.

Since b=a, b stores the value of a

Here b is signed(printed using %d) it is

13

11
+0x2

10
+0x2

9
+0x2

8
+0x2

7
+1x2

6
+0x2

5
+1x2

4
+1x2

Since leftmost bit in a is 1, sign is negative
11

+1x2
10

+1x2
9
+1x2

8
+1x2

7
+0x2

6
+1x2

5
+0x2

4
+0x2

Here a is unsigned its decimal(printed using %u) value is 61530.

Since b=a, b stores the value of a

Here b is signed(printed using %d) it is -4006

position

+1x2
3
+0x2

2
+1x2

1
+

+0x2
3
+1x2

2
+1x2

1
+

After a>>6 ll bits in a are shifted 6 positions towards right. Since a is

vacant 6 leftmost positions are filled with

After b>>6 all bits in b are shifted 6 positions towards right. Since b is

6 leftmost positions are filled with

THE BITWISE ASSIGNMENT OPERATORS

C also contains the following bitwise assignment operators.

&= ^ = |= <<=

The left operand must be an assignable integer

right operand must be a bitwise expression.

Associativity is RIGHT to LEFT

a &= 0x7f is equivalent to a = a & 0x7f.

The bitwise assignment operators are members of the same precedence group as the other

assignment operators in C.

14

6 ll bits in a are shifted 6 positions towards right. Since a is unsigned integer the

vacant 6 leftmost positions are filled with 0s.

After b>>6 all bits in b are shifted 6 positions towards right. Since b is signed integer the vacant

s are filled with 1s.

THE BITWISE ASSIGNMENT OPERATORS

C also contains the following bitwise assignment operators.

<<= >>=

The left operand must be an assignable integer-type identifier (e.g., an integer variable), and the

t be a bitwise expression.

RIGHT to LEFT

a &= 0x7f is equivalent to a = a & 0x7f.

The bitwise assignment operators are members of the same precedence group as the other

integer the

integer the vacant

type identifier (e.g., an integer variable), and the

The bitwise assignment operators are members of the same precedence group as the other

Precedence of operators

=======================

Right to Left Associativity

~ Bitwise 1s

Complementation

&= |= ^=

>>= <<=

Bitwise assignment

operators

15

Complementation

Bitwise assignment

