CP MODULE 5(Part 3of3)
 BITWISE OPERATIONS.

Some applications require the operation of individual bits within a word of memory.
Such operations are called bitwise operations.
Operation done on bits are called bitwise operations.

Bitwise operatorsin C can be divided into three general categories:

- the one's complement operator ~
- the logical bitwise operators
- bitwise and expression(\&)
- bitwise or expression(|)
- bitwise exclusive or expression(^)
- the shift operators
- right shift operator >>
- left shift operator <<

1. The One's Complement Operator

The one's complement operator (\sim) is a unary operator that inverts the bits of its operand, $\underline{1 \mathrm{~s} \text { become } 0 \mathrm{~s}}$ and 0s become 1s.
${ }^{\sim} 1=0$
~ $0=1$
This operator(\sim) always precedes its operand.
The one's complement operator is sometimes referred to as the complementation operator. It has same precedence as other unary operators.

Associativity of complementation operator is RIGHT TO LEFT.

The operand must be an integer-type quantity (including integer, long, short, unsigned, char, etc.). Generally, the operand will be an unsigned octal or an unsigned hexadecimal quantity.

Complement of octal number example

\#include<stdio.h>
main()
\{
int $\mathrm{a}=0273$;
int b;
$\mathrm{b}=\sim \mathrm{a}$;
$\operatorname{printf}(" \backslash n b=\% \mathrm{o} ", \mathrm{~b})$;
\}
//OUTPUT

Octal number are represented in 3 bits in binary representation. Since this is int It requires 2 bytes(16 bits). If 16 bits are not there remaining spaces at the beginning are filled with zeo.

If number starts with 0 (zero) it is octal number. It is printed using \%o .
E.g.octal number 015423

0	0	0	1	1	0	1	1	0	0	0	1	0	1	1	1
	1				5					4					2
	3														

E.g.octal number is 0273

2	7	3
010	111	011

Here it has only 9 bits, so to make 16 bits, fill the first $7(16-9)$ bits with 0
So 0273 is correctly represented as

Now there are 16 bits.

Suppose $\mathrm{b}=\sim \mathrm{a}$.
So a is complemented bit by bit

	0	0	0	2	7	3
a	0	000	000	010	111	011
\sim a	1	111	111	101	000	100
	1	7	7	5	0	4

So complement of $\mathrm{a}(0273)$ is 177504 .

Complement of HEXADECIMAL number example

\#include<stdio.h>
main()
\{
int $a=0 x 73 f$;
int b;

```
\(\mathrm{b}=\sim \mathrm{a}\);
    printf("\nb=\%x",b);
\}
//OUTPUT
// f8c0
```

Hexadecimal number is represented using 4 bits in binary representation
$0 \mathrm{x}($ Zero X$)$ at the beginning represents that the number is hexadecimal. It is printed using $\% \mathrm{x}$ or \%X
Hexal numbers are
$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F, 10,11,12,13,14,15,16,17,18,19,1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}$, 20,21,23,24,25,26,27,28,29,2A,2B,2C.2D,2E.2F.
E.g 0x6db7

E.g hexadecimal number is $0 x 73 \mathrm{f}$. It has to be represented in 16 bits(int need 2 bytes $=16$ boits). If not sufficient zeroes are filled at the beginning.

a	7	3	f

$0111 \quad 00111111$

Only 12 bits are there so $0 x 73 f$ is correctly represented as

a	0	7	3	f
	0000	0111	0011	1111

Complement of a that is $\sim \mathrm{a}$ is

a	0	7	3	f
	0000	0111	0011	1111
$\sim \mathrm{a}$	1111	1000	1100	0000
	f	8	c	0

Complement of $0 \times 73 \mathrm{f}$ is f 8 c 0
Examples
~0XC5 0xff3a (hexadecimal constants)
~ox1111 0xeeee (hexadecimal constants)
$\sim 0 x f f f f \quad 0$ (hexadecimal constants)
~052 0177725 (octal constants)
~0177777 0 (octal constants
hexadecimal values: $\mathrm{i}=5 \mathrm{~b} 3 \mathrm{c}$
decimal equivalents: $\mathrm{i}=23356$
$\mathrm{i}=0101101100111100$
$\sim i=1010010011000011$

The decimal equivalent of the first bit pattern can be determined by writing 010110110011 1100
$\mathrm{i}=0 \times 2^{15}+1 \times 2^{14}+0 \times 2^{13}+1 \times 2^{12}+1 \times 2^{11}+0 \times 2^{10}+1 \times 2^{9}+1 \times 2^{8}+$
$0 \times 2^{7}+0 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=$
$16384+4096+2048+512+256+32+16+8+4=23356$

The Logical Bitwise Operators

There are three logical bitwise operators:

- bitwise and (\&)
- bitwise exclusive or (^)
- bitwise or (\mid).

The operations are carried out independently on each pair of corresponding bits within the operands. Thus, the least significant bits (i.e., the rightmost bits) within the two operands will be compared, then the next least significant bits, and so on, until all of the bits have been compared. The results of these comparisons are:

- A bitwise and expression(\&)willreturn 1 if both bits have a value of 1 (i.e., if both bits are true).Otherwise, it will return a value of 0 .
- A bitwise exclusive or (\wedge) expression will return 1 if one of the bits has a value of $\mathbf{1}$ and the other has a value of 0 (one bit is true, the other false). Otherwise, it will return a value of 0 .
- A bitwise or expression (|) will return a 1 if one or more of the bits have a value of $\mathbf{1}$ (one or both bits are true). Otherwise, it will return a value of 0 .

Logical Bitwise Operations

$b 1$	$b 2$	$b 1 \& b 2$	$b 1 \wedge b 2$	$b 1 \mid b 2$
1	1	1	0	1
1	0	0	1	1
0	1	0	1	1
0	0	0	0	0

Suppose a and b are unsigned integer variables whose values are Ox6db7 and Oxa726, respectively.
The results of several bitwise operations on these variables are shown below.
$\mathrm{a}=0 \times 9248$
$\mathrm{b}=0 \mathrm{X} 58 \mathrm{~d} 9$
$\mathrm{a} \& \mathrm{~b}=0 \times 1048$
$\mathrm{a}^{\wedge} \mathrm{b}=0 \mathrm{xca} 91$
$\mathrm{a} \mid \mathrm{b}=\mathrm{dad} 9$

a	9	2	4	8
	1001	0010	0100	1000
b	5	8	d	9
	0101	1000	1101	1001

$\begin{array}{lllll}\text { a\&b } & 0001 & 0000 & 0100 & 1000 \\ & 1 & 0 & 4 & 8\end{array}$
$\begin{array}{lllll}\mathrm{a}^{\wedge} \mathrm{b} & \begin{array}{llll}1100 & 1010 & 1001 & 0001 \\ & \mathrm{C} & \mathrm{a} & 9\end{array} & 1\end{array}$

$\mathrm{a} \mid \mathrm{b}$	1101	1010	1101	1001
	D	a	d	9

The associativity for each bitwise operator is left to right.
Precedence of operators
=======================

High	$==$ $!=$	Equality operators
	$\&$	Bitwise and
	\wedge	Bitwise exclusive or
	I	Bitwise or
low	$\& \&$	Logical and

Masking

- Masking is a process in which a given bit pattern is transformed into another bit pattern using logical bitwise operation.
- One operand in bitwise operation is the original bit pattern..
- The second operand is called the mask- Mask is a specially selected bit pattern that helps to transform original bit pattern to another bit pattern.
There are several different kinds of masking operations.

1. A portion of a given bit pattern can be copied to a new word, while the remainder of the new word is filled with 0s.
a. Thus, part of the original bit pattern will be "masked off" from the final result.
b. The bitwise and operator (\&) is used for this type of masking operation
2. A portion of a given bit pattern to be copied to a new word, while the remainder of the new word is filled with $\mathbf{1 s}$.
a. The bitwise or (\mid) is used for this type of masking operation
3. A portion of a given bit pattern can be copied to a new word, while theremainder of the original bit pattern is inverted within the new word.
a. The bitwise exclusive or $\left(^{\wedge}\right)$ is used for this type of masking operation

Masking 1: A portion of a given bit pattern can be copied to a new word, while the remainder of the new word is filled with 0 s
E.g.Suppose a is an unsigned integer variable whose value is Ox6db7. Extract the leftmost 6
bits of this value and assign them to the unsigned integer variable b.
Answer: Fill the rightmost 10 positions in mask with 0 s. Fill left most 6 bits with 1s. (Total bits $=16$ bits)
Perform bitwise \& operation between a and mask

0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1
6				d				b				7			

	6	d	b	7		
a	$\mathbf{0 1 1 0}$	$\mathbf{1 1 0 1}$	1011	0111		$\&$
mask	1111	1100	0000	0000	(MASKING BIT)	

b $\quad 0110 \quad 1100 \quad 0000 \quad 0000 \quad$ (Here leftmost 6 bits of a are only copied into b.Other bits
6 c $0 \quad 0$
Here a\&mask=b
$0 x 6 \mathrm{db} 7$ \& $0 x f c 00=0 \mathrm{x} 6 \mathrm{c} 00$
If any one bit in bitwise \& is 0 , result of bitwise \& is 0
All rightmost 10 bits in the mask b are 0s. So rightmost 10 bits in the result of $a \& b$ will be 0 .
Remaining 6 bits(leftmost most) are 1 s . So remaining leftmost 6 bits in the result of $\mathrm{a} \& \mathrm{~b}$ will be same as ;leftmost 6 bits in a. (because a,\&1=a)

Here when each of the leftmost 6 bits in a is bitwise and with the corresponding 1 in the mask,, the result will be the same as the original bit in a. (leftmost 6 bits are therefore copied)
Because,
$0 \& 1=0$
$1 \& 1=1$
When each of the rightmost 10 bits in a is bitwise and with the corresponding 0in the mask, the result is always 0 .((remaining rightmost 0 bits are filled with 0 s)

Because,
$0 \& 0=0$
$1 \& 0=0$
Mask used here is $1111110000000000(0 x f c 00)$. Since the 1s appear in the leftmost bit positions and 0 s at rightmost in this mask, this is dependent on the 16-bit word size. To avoid this problem take one's complement of this mask, so that instead of 0s in right-most position 1s will come.
~1111 $110000000000=000001111111111$
$1111110000000000=\sim 000001111111111$

This means that 1111110000000000 can be written as ~0000 001111111111 (~0x3ff)
b = a \& -0x 3 ff ;
Instead of writing $0 x 6 \mathrm{db} 7 \& 0 x f c 00=0 x 6 c 00$, it is better to write:
$0 x 6 d b 7 \& \sim 0 x 3 f f=0 x 6 c 00$

Now this mask is independent of 16 bits since they contain 1 s in the rightmost position and 0 s in leftmost.
E.g.Suppose a is an unsigned integer variable whose value is Ox6db7. Extract the rightmost 6 bits of this value and assign them to the unsigned integer variable b.
Answer: Fill the leftmost 10 positions in mask with 0s. Fill rightmost 6 bits inmask with 1s. (Total bits $=16$ bits)
Perform bitwise \& operation between a and mask

	6	d	b	7	
a	0110	1101	1011	$\mathbf{0 1 1 1}$	$\&$
mask	0000	0000	0011	1111	(MASKING BIT)
$\ldots \ldots \ldots$					

b $\quad 0000 \quad 0000 \quad 0011 \quad 0111$ (Here rightmost 6 bits of a are only copied into b.Other bits
6 c $0 \quad 0$
Here a\&mask=b
$0 x 6 \mathrm{db} 7$ \& $0 \times 3 \mathrm{f}=0 \times 37$
Here mask used is $000000000011111(0 x 3 f)$. This mak contains 1 s in rightmost position.So this mask is independent of the word length

Masking 2: A portion of a given bit pattern can be copied to a new word, while the remainder of the new word is filled with 1 s

Eg. Suppose that a is an unsigned integer variable whose value is Ox6db7. Transform the corresponding bit pattern into another bit pattern in which the rightmost 8 bits are all 1 s , and the leftmost 8 bits retain their original value.
If any one bit in bitwise or is 1 , result of bitwise or is 1 .Otherwise it is copied.
$a=0110110110110111(0 x 6 d b 7) \quad \mid$
mask $=0000000011111111(0 x 00 \mathrm{ff})$
$\begin{array}{llllll}b= & 0110 & 1101 & 1111 & 1111 \\ 0 x & 6 & d & f & f\end{array}$
Here a|mask=b
$0 x 6 \mathrm{db} 7 \mid 0 \mathrm{x} 00 \mathrm{ff}=0 \mathrm{x} 6 \mathrm{dff}$

Here When each of the leftmost 8 bits in a is bitwise or with the corresponding 0 in the mask,, the result will be the same as the original bit in a. (leftmost 8 bits are therefore copied)
Because,
$0 \mid 0=0$
$1 \mid 0=1$
When each of the rightmost 8 bits in a is bitwise or with the corresponding 1 in the mask, the result is always 1 .(remaining rightmost 8 bits are filled with 1 s)
Because,
$0 \mid 1=1$
$1 \mid 1=1$

Masking 3: A portion of a given bit pattern can be copied to a new word, while the remainder of the original bit pattern is inverted within the new word.
E.g. Suppose that a is an unsigned integer variable whose value is Ox6db7. Now let us reverse the rightmost 8 bits, and preserve the leftmost 8 bits. This new bit pattern will be assigned to the unsigned integer variable b.
Answer:
Use exclusive or operation
When each of the rightmost 8 bits in a is bitwise exclusive or with the corresponding 1 in the mask, the resulting bit will be the opposite of the bit originally in a(INVERTED).
$\mathbf{0}^{\wedge} 1=1$
$\mathbf{1}^{\wedge} 1=\mathbf{0}$

On the other hand, when each of the leftmost 8 bits in a is bitwise exclusive or with the corresponding 0 in the mask, the resulting bit will be the same as the bit originally in a.(COPIED)

```
0^ 0=0
1^ 0 =1
a= 01101101 10110111 (0x 6db7) ^
mask = 0000 0000 11111111 (0xff)
b = 011011010100 1000 (0x6d48)
```

E.g Suppose that a is an unsigned integer variable whose value is Ox 6 db 7

The expression
$\mathrm{a}^{\wedge} 0 \mathrm{x} 4$
will invert the value of bit number 2 (the third bit from the right) in a. If this operation is carried out repeatedly, the value of a will alternate between Ox 6 db 7 and Ox 6 db 3 . Thus, the repeated use of this operation will toggle the third bit from the right on and off.
The corresponding bit patterns are shown below.
$\mathbf{O x 6 d b 7}=0110110110110111^{\wedge}$
mask $=\quad 0000000000000100 \quad(\mathbf{0 x 4})$

Ox6db3 = $0110110110110011^{\wedge}$
mask $=0000000000000100 \quad(\mathbf{0 x 4})$
$\mathbf{O x 6 d b 7}=\quad 0110110110110111$

The Shift Operators

The two bitwise shift operators are
shift left (<<)
shift right (>>).
Each operator requires two operands.

- The fust is an integer-type operand that represents the bit pattern to be shifted.
- The second is an unsigned integer that indicates the number of displacements (i.e., whether the bits in the first operand will be shifted by 1 bit position, 2 bit positions, 3 bit positions, etc.).
- This value cannot exceed the number of bits in the first operand.

THE LEFT SHIFT OPERATOR <<

- causes all of the bits in the first operand to be shifted to the left by the number of positions indicated by the second operand.
- The leftmost bits (i.e., the overflow bits) in the original bit pattern will be lost.
- The rightmost bit positions after shifting that become vacant will be filled with Os.

Suppose a is an unsigned integer variable whose value is Ox 6 db 7 . The expression $\mathrm{b}=\mathrm{a} \ll 1$;
$a=0110110110110111$
(0x 6db7)
When $\mathrm{a} \ll 1$ is done, bits in a are shifted one position towards left. Then leftmost bit in a is lost.
Rightmost one position will be vacant after shifting and that will be filled with 0 .
$\mathrm{a}=\quad 0110110110110111$
(0x 6db7)
$\mathrm{a} \ll 1 \quad 1101101101101110$

When $\mathrm{a} \ll 2$ is done, bits in \mathbf{a} are shifted two position towards left. Then leftmost two bits in a are lost. Rightmost two position will be vacant after shifting and that will be filled with 0 .

E.g. $a=0 x 6 d b 7$

Here after $\mathrm{a} \ll 6$ all bits are shifted 6 positions to left. Here six leftmost bits in a are lost and rightmost 6 vacant positions are filled with 0 s

RIGHT SHIFT OPERATOR >>

- The right shift operator causes all of the bits in the first operand to be shifted to the right by the number of positions indicated by the second operand.
- The rightmost bits (i.e., the underflow bits) in the original bit pattern will be lost.
- The leftmost bit positions of unsigned integer after shifting that become vacant will be filled with Os.
- If the bit pattern representing a signed integer is shifted to the right, the outcome of the shift operation may depend on the value of the leftmost bit (the sign bit).
- Negative integers have a 1 in leftmost position,
- When the signed negative integer is shifted to the right,the leftmost vacated bit positions are filled with 1 s
- positive integers have a 0 in leftmost position
- When the signed positiveinteger is shifted to the right,the leftmost vacated bit positions are filled with 0 s
Hence, the behavior of the right shift operator is similar to that of the left shift operator when the first operand is an unsigned integer
a
$a \gg 1$

3	6	d	b

a

1	b	6	d

Shift left $\mathrm{a}=6 \mathrm{db} 7 \mathrm{a} \ll 6$	Shift right $\mathbf{a}=6 \mathrm{db} 7 \mathrm{a} \gg 6$

Eg
\#include < stdio.h>
main()
\{
unsigned $\mathrm{a}=0 x f 05 \mathrm{a}$;
int $\mathrm{b}=\mathrm{a}$;
printf ("\%u \%d\n", a, b) ;
printf ("\%x\n", a >> 6);
printf (" $\% x \backslash n ", b \gg 6$);
\}

Here $\mathrm{a}=0 \mathrm{xf} 05 \mathrm{a}$
Binary representation

Unsigned decimal value $=$
$1 \times 2^{15}+1 \times 2^{14}+1 \times 2^{13}+1 \times 2^{12}+0 \times 2^{11}+0 \times 2^{10}+0 \times 2^{9}+0 \times 2^{8}+0 \times 2^{7}+1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+$ $0 \times 2^{0}=61350$

Signed value $=2 \mathrm{~s}$ complement

a=0xf05a	1	1	1	1	0	0	0	0	0	1	0	1	1	0	1	0
$1 s$ comp	0	0	0	0	1	1	1	1	1	0	1	0	0	1	0	1
$2 s$ comp $=1 s$ comp +1	0	0	0	0	1	1	1	1	1	0	1	0	0	1	1	0

Since leftmost bit in a is 1 , sign is negative
$0 \times 2^{15}+0 \times 2^{14}+0 \times 2^{13}+0 \times 2^{12}+1 \times 2^{11}+1 \times 2^{10}+1 \times 2^{9}+1 \times 2^{8}+1 \times 2^{7}+0 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+$ $0 \times 2^{0}=-4006$

Here $\mathrm{a}=0 \mathrm{xf05} \mathrm{a}$
Here a is unsigned its decimal(printed using \%u) value is 61530 .
Since $b=a, b$ stores the value of a
Here b is signed(printed using \%d) it is -4006

After a>>6 ll bits in a are shifted 6 positions towards right. Since a is unsigned integer the vacant 6 leftmost positions are filled with 0s.
b

After $b \gg 6$ all bits in b are shifted 6 positions towards right. Since b is signed integer the vacant 6 leftmost positions are filled with 1 s .

THE BITWISE ASSIGNMENT OPERATORS

C also contains the following bitwise assignment operators.
\& $\quad \wedge=\quad \mid=\quad \ll=\quad \gg=$
The left operand must be an assignable integer-type identifier (e.g., an integer variable), and the right operand must be a bitwise expression.

Associativity is RIGHT to LEFT
a $\&=0 \times 7 f$ is equivalent to $a=a \& 0 x 7 f$.
The bitwise assignment operators are members of the same precedence group as the other assignment operators in C .

Precedence of operators

Category	Operator	Associativity
Postfix	O[]->. ++ -	Left to right
Unary	+-! ++--(type)* \& sizeof	Right to left
Multiplicative	* / \%	Left to right
Additive	+-	Left to right
Shift	<<>>	Left to right
Relational	$\ll=\gg=$	Left to right
Equality	$=$! $=$	Left to right
Bitwise AND	\&	Left to right
Bitwise XOR	^	Left to right
Bitwise OR	1	Left to right
Logical AND	\&\&	Left to right
Logical OR	II	Left to right
Conditional	?:	Right to left
Assignment	$=+=-=*=/=\%=\gg=\ll=\&=\wedge=1=$	Right to left
Comma	,	Left to right

Right to Left Associativity	
\sim	Bitwise 1s Complementation
$\boldsymbol{\&}=\mid=\wedge=$ $\gg=\ll=$	Bitwise assignment operators

