

CP

STORAGE CLASSES IN C

● Storage class refers to the

● Storage class defines the

○ Scope of variable is, the portion of the program where the variable can

accessed.

There are four different storage-class specifications in C:

 keywords

Automatic auto

External extern

Static static

Register register

Example declarations

auto int a, b, c;

extern float rootl, root2;

static int count = 0;

extern char star;

Here a, b and c are automatic integer variables, and the second declaration establishes rootl and

root2 as external floating-point variables. The third declaration states that count

variable whose initial value is 0, and the last declaration shows that star is an external character

type variable.

AUTOMATIC VARIABLES

● Automatic variables are always declared

● If no storage class is specified when

considered as automatic variable.

1

P MODULE 5(Part 2of3)

Scope rules Storage classes.

STORAGE CLASSES IN C

Storage class refers to the permanence of a variable, and its scope within the program.

Storage class defines the life-time and scope(visibility) of a variable.

Scope of variable is, the portion of the program where the variable can

class specifications in C:

Here a, b and c are automatic integer variables, and the second declaration establishes rootl and

point variables. The third declaration states that count

variable whose initial value is 0, and the last declaration shows that star is an external character

Automatic variables are always declared inside a function.

If no storage class is specified when we declare a variable inside a function, it is

considered as automatic variable.

within the program.

Scope of variable is, the portion of the program where the variable can be

Here a, b and c are automatic integer variables, and the second declaration establishes rootl and

 is a static integer

variable whose initial value is 0, and the last declaration shows that star is an external character-

we declare a variable inside a function, it is

2

E.g.

main()

{

int a;

int b;

}

This is same as:-

main()

{

auto int a;

auto int b;

}

a and b are automatic variables.

● Automatic variables are local to the function in which they are declared.

○ An automatic variable does not retain its value when control is transferred out of

its defining function.

E.g

void show()

{

int a=5; //This variable a AUTOMATIC. cannot be accessed from outside this function

printf(“a=%d”,a);

}

main()

{

show();

printf(“a=%d”,a); //This is ERROR. Because a is local inside function show()

 // a is not declared inside this block(function)// a is not global(external)

}

● Formal arguments in function definition header are also automatic variable.

E.g.

void add(int a ,int b) // here a and b are formal arguments. They are automatic variables.

{

}

3

● Scope of automatic variable: inside the block.

● Life time of automatic variable : ends at the end of the block

● Storage of automatic variable: inside memory(stack)

● If not initialized then the initial value of automatic variable is garbage value.

●

main()

{

int a;

printf(“a=%d”,a);

}

OUTPUT

a=52241111

Here initial value is not assigned to a. So its initial value will be garbage value.

● An automatic variable does not retain its value once control is transferred out of its

defining function.

○ So any value assigned to an automatic variable within a function will be lost once

the function is exited.

● Automatic variables can be declared within a single compound statement. (block

enclosed within { and }

○ It can be accessed only inside that block

E.g

#include<stdio.h>

main()

{

int a=3; // auto// local to main function

int b=5; // auto// local to main function

printf("\na=%d b=%d",a,b); //a=3 b=5

if(a>0)

{

int b; // b is declared in this block.Soscope of this b is only inside this if block

// when curly brace } comes its life ends

b=2;

printf("\na=%d b=%d",a,b); //a=3 b=2 // a is not in this block.But a is in this function

//with value 3

}

for(;a<4;a++)

4

{

int b; //b is declared in this block scope of this b is only inside this for block

 // when curly brace } comes its life ends

b=10;

printf("\na=%d b=%d",a,b); //a=3 b=10//// a is not in this block.But a is in this function

}

printf("\na=%d b=%d",a,b); //a=3 b=5 in this main function

a=a+10;

b=b+1;

printf("\na=%d b=%d",a,b); //a=13 b=6

}

Here in main() two variables a and b are declared. Their scope is inside the main() function

block.

In if block another b is declared. The value of that b is available inside that if block

In for block also another b is declared. The value of that b is available only inside that for block.

E.g.

main()

{

int a=10; // a is local inside main()

if(a>0)

{

int b=3; //b is local inside this if block

}

printf(“\n a=%d”,a); //a=10

printf(“\n b=%d”,b); //ERROR. Because b is not declared inside main function() block

// b is declared only inside if block

//b is not global

}

EXTERNAL VARIABLES(global variable)

● External variables are called global variables.

● External variables are defined outside all functions

● They are not defined inside any function

E.g

#include<stdio.h>

5

extern int a=3,b;

int c;

void increment()

{a=a+1; // a is global//a=3+1

printf(“\na=%d”,a); //a=4

}

main()

{

printf(“\na=%d”,a); //a=3

increment();

printf(“\na=%d”,a); //a=4

}

Here a ,b and c are external variables, since they are defined outside all functions. Storage class

extern is not compulsory for external variables.

● Since variables are defined outside the function, the extern keyword is optional.

○ By default all variables defined outside all functions will be extern if no other

storage class is specified.

● An external variable definition will automatically allocate the required storage space for

the external variables within the computer’s memory.

● The assignment of initial values can be included within an external variable definition if

desired.

○ If not initialized its initial value will be 0(zero).

○ the initial values must be expressed as constants rather than expressions.

○ These initial values will be assigned only once, at the beginning of the program.

● Scope of external variable: whole program-

○ Also can be accessed from different files

● Life time of external variable : ends when program terminates

● Storage: inside memory(data segment)

● If not initialized then the initial value of external variable is 0.

● External variables can be accessed from any function in the program.

● External variables retain their assigned values within this scope.

○ Therefore an external variable can be assigned a value within one function, and

this value can be used (by accessing the external variable) within another

function.

○ If its value is modified it is also seen by all functions

● Any variable declared outside all function are external variables..

6

● If external variable definition comes after a function definition that uses external

variable, then that function must include the external variable declaration of that

variable.

External variable definition External variable declaration

● does not need extern keyword.

● It can contain initial values.

● must contain extern keyword.

● External variable declaration should

not contain initial value.

● The name of the external variable

and its data type must be same as

the corresponding external variable

definition.

External variable definition before all

function definitions

External variable definition after show function

definitions

int a=5; //external variable definition

void show()

{

printf(“\n a=%d”,a); //a=5//a is global

}

main()

{

printf(“\n a=%d”,a); //a=5

show();

}

void show()

{

extern int a; //external variable declaration

printf(“\n a=%d”,a); //a=5// a is global

}

int a=5; //external variable definition

main()

{

printf(“\n a=%d”,a); //a=5

show();

}

///a is an extern variable but it is defined after

show() function definition.

//show() function prints the value of a. So it

should declare the external variable a before

accessing it.

Extern variables defined in one file can be accessed from another file

The external variable declared or defined in one file can be accessed by another file. We have to

include the filename of first file in second file using #include.

7

sample.h

extern int g=5;

COMPILE THIS FILE and run

Fle1.c

#include<stdio.h>

#include"sample.h"

main()

{

printf("global variable g=%d",g);

g=g+3;

printf("\nglobal variable g=%d",g);

}

OUTPUT

global variable g=5

global variable g=8

STATIC VARIABLES

● Static variables are defined within individual functions

● Scope is same as automatic variables;

● i.e., they are local to the functions in which they are defined.

● The initial values must be expressed as constants, not expressions.

8

Static variables Automatic variables

● Must begin with static keyword.

● static variables retain their values

throughout the life of the program

even if a function is exited and then re-

entered at a later time.

● Static variables in a function are

initialized only once when the

function is called first time.

● Static variable does not lose its value

when control exit from the function.

● Cannot be accessed outside of their

defining function.

● Keyword auto is optional.

● Automatic variables does not retain

their values throughout the life of the

program.

● Automatic variables in a function are

initialized every time the function is

called.

● Automatic variables losesits value

when control exit from the function.

● Cannot be accessed outside of their

defining function.

static auto

#include<stdio.h>

void increase()

{

static int s=1; //static variable

printf("\n s=%d",s);

s=s+1;

}

main()

{

increase();

increase();

increase();

}

#include<stdio.h>

void increase()

{

int s=1; //automatic variable

printf("\n s=%d",s);

s=s+1;

}

main()

{

increase();

increase();

increase();

}

OUTPUT

s=1

s=2

OUTPUT

s=1

s=1

9

s=3 s=1

● Here when first time increase() is called,

static variable s is initialized to 1. It prints

s as 1.Then s is incremented by 1.

○ So s becomes 2.

● Second time when increase() is called(s is

not initialized again). Here it reads s as 2.

Itprints s as 2. Then s is incremented by 1.

○ So s becomes 3.

○ (static variable retains its value

even when the function is

called again)

● Third time when increase() is called(s is

not initialized again). Here it reads s as 3.

It prints s as 3. Then s is incremented by 1.

So s becomes 4.

● Here when first time increase() is called,

auto variable s is initialized to 1. It prints

s as 1.Then s is incremented by 1. So s

becomes2.

● When second time increase() is called,

auto variable s is initialized to 1. It prints

s as 1.Then s is incremented by 1. So s

becomes2.

● When third time increase() is called, auto

variable s is initialized to 1. It prints s as

1.Then s is incremented by 1. So s

becomes2.

●

● Scope of static variable: inside the block.

● Life time of static variable : ends when the program terminates

● Storage of static variable: inside memory(data segment)

● If not initialized then the initial value of static variable is 0(zero).

REGISTER VARIABLES

● Registers are special storage areas within the REGISTERS of computer’s central

processing unit.

● The actual arithmetic and logical operations that comprise a program are carried out

within these registers.

● Variable declaration should be preceded by register keyword.

register auto

register variables are local to the function

in which they are declared

The address operator(&) cannot be

applied to register variables.

Auto variables are local to the function in

which they are declared.

The address operator (&) can be applied to

register variables.

main ()

{

register int a=2;

printf(“%x”,&a); // ERROR

//because address of register variable

main ()

{

int a=2;

printf(“%x”,&a); //prints the address of a

10

//cannot be accessed. So & cannot be used

}

}

● Scope of register variable: inside

the block.

● Life time of register variable : ends

at the end of the block

● Storage of register variable: inside

CPU register

● If not initialized then the initial

value of register variable is

garbage value.

● Scope of automatic variable: inside

the block.

● Life time of automatic variable :

ends at the end of the block

● Storage of automatic variable:

inside memory(stack)

● If not initialized then the initial

value of automatic variable is

garbage value.

A program that makes use of register

variables should run faster than the

corresponding program without register

variables.

It may also be somewhat smaller in size

● If the requested register space is not available register variables will be treated as

automatic variables.

Suppose a C program contains the variable declaration

register int a, b, c;

This declaration specifies that the variables a, b and c will be integer variables with

storage class register. Hence, the values of a, b and c will be stored within the registers of

the computer’s central processing unit rather than in memory, if the register space is

available.

If the register space is not available, then the variables will be treated as integer variables

with storage class automatic. Then,

register int a, b, c;

 is equivalent to the declaration

auto int a, b, c;

or simply

int a, b, c;

● Usually, only integer variables are assigned the register storage class.

○ some compilers allow the register storage class to be associated with other types

of variables having the same word size (e.g., short or unsigned integers).

○ Moreover, pointers to such variables may also be permitted.

11

● The register is the only storage class specifier that can be used part of a formal

argument declaration within a function, or as a part of an argument type specification

within a function prototype.

Initialization of static extern, auto and register variables

The static initialized to 0.

The extern initialized to 0

The auto initialized to garbage values

The register initialized to garbage values

#include<stdio.h>

int x; //external variable

main()

{

static int z; //static variable

int y; //automatic variable

register int r; //external register variable

printf("\nstatic initialized x=%d",x);

printf("\nextern initialized z=%d",z);

printf("\nauto initialized y=%d",y);

printf("\nregister initialized r=%d",r);

}

OUTPUT

static initialized x=0

extern initialized z=0

auto initialized y=Garbage value

register initialized r=Garbage value

